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Abstract

The propagation of magnetostatic waves (MSW)

in a waveguide partially loaded with a low-loss

YIG slab is investigated theoretically. Using the

integral equation method, the dispersion relation

is found to be an infinitely large determinant

equal to zero. Proper truncation of this determi–

nant and numerical analysis to find its roots are

carried out in this work. It is noticed that there

exists a trade off between the time delay and the

device bandwidth and maximization of one property

leads to a poor value in the other. Thus some

design compromises should be made. It is alao
observed that the frequency range of operation of

the device can be adjusted by an external magnetic

bias field. This flexibility in tuning the device

to operate in any frequency range adds an extra

dimension of flexibility to the operation and also

design of these devices.

Introduction

Magnetostatic–wave propagation in a YIG slab

in free space on an infinite ground plane or

bounded by two infinite parallel ground planes or

completely fillin a waveguide has been reported in
the literaturejl–$) Some results pertinent to the

design and construction of delay lines and filters

were also given~4-6) The theoretical analysis car-
ried out by all these previous works are based on

the method of separation of variables, whereby a

closed form for the dispersion relation may be

obtained.
In this paper, the propagation of magneto-

static waves in a rectangular waveguide partially

filled with a YIG slab is studied theoretically.
The dc external magnetic field is parallel to the

slab and perpendicular to the direction of propa-

gation. The slab is placed inside and along the
guide but not necessarily in contact with the

waveguide walls. Figure 1 shows a cross section of

the configuration. To simplify the analysis, the

slab is assumed to be thin, so that approximate

numerical solution becomes feasible.
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The introduction of a gap length (xo) is
motivated to account for the loose contacts between

the YIG slab and the waveguide walls and to provide

a general structure for the design of delay lines.

For the configuration shown in Figure 1., if the gap

length X. is zero, conventional mode analysis ma

be used to solve for the dispersion re~ationj?)

However, when X. is nonzero, numerical analysis

based on the integral equation formulation appears

to be the only means.

Based on the integral equation method the
problem of magnetostatic–wave propagation in a YIG

slab of finite width inside a waveguide (see Fig 1)
is analyzed and the magnetic potential function in

the YIG region is expressed in terms of’ an integral
equation. Assuming the slab to be thin, an approx-

imate numerical solution to the integral equation
can be obtained. Based on the approximate numeri-
cal solution for the dispersion relation, some com-

puter results obtained in a certain frequency range

is plotted. The results obtained from the approxi-

mate numerical solution for the general case, when

it is reduced to special cases, is in good agree-

ment with the existing published results.

Theoretical Analysis

As noted earlier, when the width of the slab

is less than the width of the waveguide, that is
when xo#O (see Fig 1), the mode analysis technique

appears to be fruitless and the integral equation
method seems to be more appropriate. l.n this meth–

od an unknown magnetic potential function denoted

by~(x,y,z) at a point (x,y,z) inside the YIG slab

is assumed to exist. Assuming a time clependence of

the form ej~t and wave propagation in the y-direc-

tion, the y–variation would be therefore of the

form e-jky where ~, t and k are the frequency of
operation, the time parameter, and the wave number

respectively. In this manner the magnetic poten-

tial function in th~ YIG region, @(x,y,z), can be
written as ~(x,z)e-jky. Based on ~(x,z) and with
the help of proper permeability tensor,, ,[8) fictitious

“magnetic sources” can be obtained in terms of

7(X,2). The density of magnetic sources consists

of two parts a) the magnetic volume charge density

( Pv) and b) the magnetic surface charge density

(Ps,). Considering a uniform guide cross section

and combining the obtained magnetic sources with
an appropriate Green’s function, an integral ex–

presaion for the magnetic potential function
?(x,z) in the YIG region (except for the common

factor e–jky) can be written as:
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~(x, Z) = ~~Pv(x’, z’)G(x, x’, z,z’)dx’dz’+

YIG

-1

()Td = !& (3)
area

.~l~ (x’ ,z’ )G(x,x’ ,Z,Z’ )dZ’ . (1)
YfG
sides

where G(x, x’ ,z, z’ ) is the Green’s function for a

magnetic line source located at (x’,z’ ) inside the

waveguide.

Approximate Numerical Solution

The two dimensional integral expression given

by equation (1) is difficult to solve numerically.

Assuming the slab to be very thin makes this equa-

tion one dimensional and tractable. This assump–

tion also makes the demagnetizing forces negligible

in this analysis~g)

With this assumption and some further mathe-
matical manipulation, an integro-differential
equation in terms of ~(x,z) is obtained. Solving

the equation so obtained for the dispersion rela–

tions would lead to an infinite system of linear
equations which are coupled. Decoupling this sys-

tem of equations into two sub-systems, one for odd
modes and another for even modes, would lead to two

matrix equations. Each matrix equation consists of

an infinite matrix multiplied by a constant vector.

For nontrivial unique solutions to the matrix

equations, the infinite determinant of the coeffi-

cient matrix must be zero in theory. The dis-

persion relation is therefore obtained from the

vanishing of this infinite determinant. However,

in practice the size of the matrix is reduced by
finding a proper cutoff point (N). Denoting the
determinant of the cutoff (NxN) matrix by DN(ohk),

the equation to be solved can be written as:

~(w,k) ‘O (2)

Root finding of the dispersion relation as

given by equation (2) is done by the Newton–Raphson

method. With the aid of a proper algorithm and

computer programming, the determinant roots of the

dispersion relation were found through several

iterations.

Computer Simulation and Results

Considering only the first mode and with

aid of a computer program, several important
fects were studied. For viewing purposes,

the

ef-
the

results of the root finding procedures were plot-

ted. Figure 2 shows the relationship between the
normalized air-gap (2xo/a) and the cutoff point N.

As it can be noticed from this figure, there is

roughly an exponential increase in matrix size as

the normalized air-gap increases.
Figure 3 shows the effect of increasing the

normalized air-gap (2xo/a) on the dispersion re-
lation. It is noted that the dispersion curves

shift downward as the air-gap increases. The com-

bined effects of the position and width of the YIG
slab is shown in Figure 4. In this figure, the
dispersion relations for several positions (zo) of

the slab, each position with two values of Xo, are
presented. From this figure it is noticed that as

the slab position is lowered, the dispersion curves

are compressed with smaller bandwidths. The corre-
sponding group time delay per unit length in nslcm

defined by the relation:

is shown in Figure 5. I’n t’his figure, for fixed

time delay the operating frequency can be adjusted

effectively by varying the position Zo, while for a

fixed frequency the time delay can be increased by

increasing the gap length Xo.

Tunable properties are also investigated by

varying the magnetic bias field. Figure 6 shows
the effect of magnetic bias field on the dispersion

curves for a special case, that is when X. = O. AS

can be seen, the dispersion curves move up or down

the o-k plane by increasing or decreasing Hdc

respectively.

Conclusions

The propagation and time delay characteristics

of magnetostatic waves in a waveguide partially

filled with a YIG slab, with an equal air-gap on

each of its sides, were studied and some numerical
results were presented for several chosen configu–

rations over a frequency range of approximately

6.0 to 10.0 GHZ. The dependence of the dispersion

relation and group time delay per unit length on

the position and width of the YIG slab were pre-

sented. The effects of varying Hdc on the disper-

sion curves were also studied and presented.

It is concluded that as the slab width de-

creases, the delay time increases and dispersion

curves bandwidth shifts downward while as the slab

position is lowered, the delay time increases and

the dispersion curves are compressed with smaller

bandwidths. This means that roughtly speaking, the

position of the slab controls the bandwidth and its

width controls the center frequency of the device.
From Figures 4 and 5, it is seen that in order

to obtain high values of group time delay per unit
length, the YIG slab must be narrow and placed at

the bottom of the guide. On the other hand, to

maximize the device bandwidth, a narrow YIG slab

positioned at the top inside surface of the wave–

guide is preferred. Therefore, it can be concluded

that there exists a trade off between the time de-
lay per unit length and the device bandwidth and

maximization of one property leads to a poor value

in the other. Thus some design compromises should

be made.
Finally, the ability of the device to be tuned

by means of a magnetic bias field adds an extra

dimension of flexibility for its operation in any
desired frequency range.
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FIG. 4 COMBINEO EFFECT OF POSITION AND UIOTH OF THE SLAB ON THE

OISPERS1ON CURVES.

I

FIG 5 fFFEC1 OF SLAE MIMH AND POSITION ON TINE

CiLAYIUNJT LENGTH.

Y “@-

)

FIG 6 EFFECT OF MAGNET:: BIAS FIELD
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